“我游泳賊6,,有空一起游泳,。”夏路給唐婠發(fā)微信,。
清晨六點多,,夏路醒來,他看到唐婠回復了:“有多6,?”
回復時間是凌晨3點,,師姐真是個夜貓子。
夏路:“6到你不信,?!?p> 唐婠:“空談誤國,實干興邦,?!?p> 夏路:“你不用睡覺的嗎?”
唐婠:“上課去了,,88,。”
夏路:“注意身體,?!?p> 心疼婠婠師姐啊,她做實驗估計做到凌晨,,睡了兩三小時,,然后去上課。
將唐婠的微信朋友圈刷到一年前的更新,,夏路看到,,去年唐婠還是新生時領取課本,她居然用帶輪子的綠色垃圾桶作為運輸工具,,推著裝滿課本的垃圾桶回到了她的宿舍,。
醫(yī)科生的課本太多了,其中許多醫(yī)學書籍都是板磚那么厚,,又厚又重,,不帶大型運輸工具的話,徒手搬運需要來回好幾次,。
后來唐婠學聰明了,,第二次領取課本的時候,,她拖著個大旅行箱去到領書現(xiàn)場。
“醫(yī)學部,,女的當男的用,,男的當牲口用,師姐真不容易,,牲口們也挺辛苦,。”夏路起床洗漱,,吃完早點去上課,。
大一上學期,夏路給自己設定的學業(yè)目標是GPA排名同期生中的前列,。
所謂前列,,至少得是前10%的排名。
夏路所在的弘毅理科1班有26人,,班上的前10%就是前兩名,。1班+2班+3班+數(shù)學班有110人,大理科班的前10%是前11名,。
競爭還是蠻激烈的,,夏路按時上課,積極參與師生茶話會,。
這周六的值班教授是余楓,,理科1班的大一學生集中在梅園三舍1號茶話室,下午兩點到四點是喝茶時間,。
余楓教授的性格,,學生們都了解到了,他的高數(shù)課你可以不去上,,但他的茶話會你必須參加,。
師生之間的喝茶時間是弘毅學堂小班制、書院制,、導師制的典型特征,,梅園三舍在周一到周五的晚上、周六日的全天,,都會有一位教授或副教授坐鎮(zhèn)茶話室,,和學生們近距離互動,解答學生們在學業(yè)上,、生活上的困惑,。
“今天是我的茶話會,那我們利用這兩個小時聊聊數(shù)學?!庇鄺鹘淌诤攘丝诓?,說到:“微積分我在課堂上已經(jīng)講完了,,誰還記得牛頓的墓碑上寫了些什么,?”
張凱的反應最快,他立即作答:“伊薩克?牛頓爵士安葬在這里,,他以超乎常人的智力創(chuàng)造了無與倫比的科學成就,,他令人類歡呼,他是偉大的人類之光,?!?p> “全對,一個字不差,?!庇鄺鹘淌邳c點頭道,又問:“那萊布尼茨的墓碑上寫了什么,?”
張凱正準備梅開二度,,誰知夏路搶先說到:“萊布尼茨埋骨處,就這么一句話,?!?p> “嗯,萊布尼茨埋骨處,?!庇鄺鹘淌谟趾攘艘豢诓瑁f到:“同學們,,我們總是先了解牛頓,,才知道萊布尼茨。全世界任何一所學校,,必然是先學習牛頓三定律,,然后再接觸微積分。這種先后關系,,蘊含了人類思維進階的奧秘,。我布置的第一個作業(yè)是,請同學們寫一篇文章,,陳述你對牛頓思想,、萊布尼茨思想的個人看法?!?p> 哎喲我去,,余教授喝著茶吹著水,不經(jīng)意間就布置作業(yè)了。
同學們趕緊記下這個數(shù)學作業(yè),,這算平時成績,。
“我們高數(shù)課本上采用的微積分體系,實際上是萊布尼茨體系,,我布置的第二個作業(yè)是,,如果說萊布尼茨贏了,那么他贏在哪里,?這兩個作業(yè)請同學們在本學期結(jié)束前交給我,,下面請允許我跨個界,我想跟同學們聊聊牛頓和他的光學……”余教授談笑風生,,一壺茶喝完,,他講到了巴赫的賦格曲、貝爾尼尼的雕塑以及倫勃朗的畫作,。
“余教授提到了很多巴洛克式的藝術作品,,令我深受啟發(fā)?!毕穆泛戎┍?,吃著手指餅干,一副甘之如飴的樣子,。弘毅學堂的福利真好啊,,每天都能享受免費的飲料和零食。
“談談你的啟發(fā)吧,,夏路,。”余教授望向夏路,,又泡了一壺茶,。
“巴洛克風格,還是很值得研究的……”夏路說到,,他對余教授布置的兩個平時作業(yè)有了大致的思路,。
余教授上正課也好,參與課后的師生茶話會也罷,,他的風格是先設定一個主題,,卻不以直接粗暴的、說明書式的方式去解釋這個主題,。他會在聊天中逐漸釋放一些線索,,引導學生去思考。
牛頓思想,、萊布尼茨思想,?
僅談論微積分,或許是萊布尼茨贏了。
那么萊布尼茨究竟贏在哪里,?
這種問題不會出現(xiàn)在高數(shù)期末考試的卷子上,,它以平時成績的形式,指引學生們把思維帶入枯燥數(shù)學公式之外的領域,。
“要想真正的了解萊布尼茨思想和牛頓思想,,我覺得我們有機會的話,可以去托萊多教堂觀摩學習,?!毕穆返难哉摫容^委婉含蓄,,他覺得自己大概率猜到了余楓教授的心思,。
余教授聊了一大堆看似無關的題外話,實則話中有話,。
余教授所布置的兩個平時作業(yè),,夏路私以為其核心思想是線性與非線性的區(qū)別。
古典是線性的,,代表人物是牛頓,。
巴洛克是非線性的,代表人物是萊布尼茨,。
論述牛頓思想,、萊布尼茨思想,其本質(zhì)是論述線性與非線性的異同,,這很數(shù)學,。最終的答案,絕對正確的答案,,還是應該回歸數(shù)學的本質(zhì),。
這番心理活動,夏路自己曉得就好了呀,,平時成績占據(jù)20%到40%的分數(shù)呢,。
期末考試都是些死題目,班上的同學們應該都能拿到不錯的分數(shù),,大家皆是經(jīng)歷過高考并獲得高分的人,,是從各種考試中脫穎而出的學霸。
要想進入前10%的優(yōu)秀生行列,,成為學霸中的學霸,,平時成績是很重要的。
所以夏路點到為止,,他在茶話會上說的話,,讓余教授聽懂就好了。
“托萊多教堂在西班牙馬德里,是最為典型的巴洛克建筑,。我們弘毅學堂的學生,,會有機會出國學習的?!庇嘟淌诓宦堵暽某蛄讼穆芬谎?,這個小伙子,有點靈性嘛,。